Кодирование и измерение графической информации

Количество информации в изображении можно измерить. Для этого изображение разбивают на отдельные маленькие фрагменты (пиксели). Каждому пикселю, формирующему изображение, назначается определенный цвет. Система растровых изображений использует RGB матрицу, т.е. три цвета, красный, зеленый и синий. Цвет каждого пикселя зависит от яркости этих цветов. Этот процесс называют пространственной дискретизацией изображения. Изображение, сформированное таким способом, называют растровым.

Качество такого изображения зависит от двух параметров- количество пикселей и количество цветов в палитре.

Кодирование цвета точки.

С количеством цветов в палитре связана глубина цвета.

 $N=2^i$.

где N – количество цветов в палитре,

i – глубина цвета(бит), длина двоичного кода, который используется для кодирования цвета пикселя.

Согласно этой формуле сформируем таблицу

Количество цветов в	2	4	8	16	32	64	128	256		16
палитре									65536	млн
Глубина цвета (бит)	1	2	3	4	5	6	7	8	16	24

Например, если в палитре 8 цветов, то глубина цвета 3 бит, т.е. длина двоичного кода пикселя состоит из трёх нулей и единиц.

Задача 1: Найдите глубину цвета изображения, если количество цветов в палитре 8.

$$N = 8$$

$$i - ?$$

$$2^{i} = N$$

$$2^{i} = 8 \Rightarrow 2^{i} = 2^{3} \Rightarrow i = 3(6um)$$

Ответ: 3 бит.

Задача 2: Найдите количество цветов в палитре, если глубина цвета изображения 7.

$$i = 7$$

$$N - ?$$

$$2^{i} = N$$

$$2^{7} = N \Rightarrow 2^{7} = 128 \Rightarrow$$

$$N = 128(ysemos)$$

Ответ: 128 цветов в палитре.

Формула для определения количества информации в изображении:

$$I = H \cdot W \cdot i$$
,

где І- информационный объём изображения;

H и W – высота и ширина изображения в пикселях,

i – глубина цвета (т.е. количество бит, выделенных на кодирование цвета).

Задача 3: Какой объём информации занимает растровое изображение размером 1024 x 512 пикселей с глубиной цвета 8 бит.

Дано H×W = 1024 × 512 пикселей <i>i</i> = 8 бит	Решение
 Найти: <i>I-</i> ?	4194304 бит/8/1024=512 Килобайт Ответ: 512 Килобайт

Задача 4: Размеры растрового графического изображения 800 x 600 точек. Количество цветов в палитре 16 млн. Определить информационный объём изображения.

Дано	Решение
$H \times W = 800 \times 600$ точек	
N= 16 млн	$N=2^i$
	N= 16 млн \rightarrow 2 ²⁴ =16 млн \rightarrow i= 24 бит
	<i>I</i> =800×600×24= 11520000 бит
Найти:	11520000 бит/8/1024/1024=1,37 Мегабайт
<i>I-</i> ?	Ответ: 1,37 Мегабайт

Кодирование и измерение звуковой информации

Чтобы компьютер мог работать со звуком, непрерывный звуковой сигнал должен быть представлен в двоичной форме, для этого выполняют временную дискретизацию звука. Весь интервал изменения амплитуды разбивают на уровни громкости, а всё время звучания на одинаковые временные интервалы. Количество возможных уровней громкости можно рассматривать, как набор вероятных состояний в каждый временной интервал.

Характеристики цифрового звукового сигнала:

- разрядность, bit (количество bit информации отводимое под хранение одного уровня);
 - количество уровней громкости;
 - частота дискретизации, Нz (количество оценок уровня сигнала за 1 сек).
- количество параллельных потоков сигнала (моно -1 поток, стерео -2 потока, квадро- 4 потока)

Чем больше разрядность и частота дискретизации звука, тем более качественным будет звучание оцифрованного звука.

Разрядность и количество уровней громкости связаны формулой

$$N=2^{i}$$
 i - p азрядность, бит N - количество уровней громкости

Согласно этой формуле

Количество уровней громкости	2	4	8	16	32	64	128	256
Разрядность (бит)	1	2	3	4	5	6	7	8

Задача 1: Найдите разрядность звукового фрагмента, если количество уровней громкости 256.

Решение:

$$N = 256$$
 $2^{i} = N$ $2^{i} = 256 \Rightarrow 2^{i} = 2^{8} \Rightarrow i = 8(60m)$

Ответ: 8 бит.

Задача 2: Найдите количество уровней громкости, если разрядность 5 бит. Решение:

Решение:
$$i = 5$$

$$N = N$$

$$2^{5} = N \Rightarrow 2^{5} = 32 \Rightarrow N = 32$$

Ответ: 32 уровня громкости.

Количество информации в звуковом файле

Задача 3: Определить информационный объем стереофонического звукового фрагмента оцифрованного с частотой дискретизации 11250 Hz, разрядностью 16 Бит. Продолжительность звукового фрагмента 12 сек.

Дано	Решение
Ch =2 (т.к. стерео)	I = v * i * Ch * t,
$v = 11250 \ \Gamma$ ц	
i = 16 бит	<i>I</i> =11250×16×2×12= 4320000 бит
t = 12 секунд	4320000 бит/8/1024=527,3 Килобайт
Найти:	Ответ: 527,3 Килобайт
<i>I</i> -?	

Задача 4: Известно, что звуковой фрагмент имеет 64 уровня громкости, частота дискретизации равна 8000 Гц, это моно звук и он имеет длину 4 минуты. Определите информационный объем такого файла.

Дано	Решение
Ch = 1 (т.к. моно)	$N=2^i$
$v = 8000 \Gamma$ ц	$64=2^i \longrightarrow i=6$ бит
N = 64	I = v * i * Ch * t,
t=4 минуты	<i>t</i> =4 минуты=240 сек
Найти:	I =8000×6×1× 240= 11520000 бит
<i>I</i> -?	11520000 бит/8/1024/1024=1,37 Мегабайт
	Ответ: 1,37 Мегабайт